the PFC current loop and the dc-dc voltage loop

03/05/2013 15:31

So now let’s use this system to evaluate the four transfer gains defined in Fig. 4. The G/(1+GH) trace has the lowest gain. Bode Analysis Design Tool.An in-circuit loop analysis was developed based on a TMS320F2808 and a PC-based design tool for a digital telecom rectifier reference design. The PC communicates to the power supply through an RS-232 interface. The telecom rectifier has three loops that can be analyzed with the system, the power factor correction (PFC) voltage loop, the PFC current loop and the dc-dc voltage loop. Commands are defined to select one of three loops in the power-supply system.

To characterize the system, an injection node and a response-measurement node are selected. The analysis start frequency, stop frequency, number of frequency steps, injection amplitude, number of dwell samples and number of measurement samples are specified. The PC test program sends commands to the digital controller to make a frequency response measurement for each frequency step. At the end of each measurement, the digital controller returns the two accumulated sine and cosine coefficients for that frequency. The PC program calculates the complex open-loop transfer function, and then plots the magnitude and phase for that frequency.

Because the power-stage compensator is digital, the test program queries the digital controller for the compensator coefficients, then calculates the exact frequency response of the compensator. Once the compensator frequency response is known, it is factored out of the open-loop transfer function to calculate the transfer function for the power stage.Once these measurements and calculations are made, the user selects the display of frequency response of the power stage, the frequency response of the digital compensator, the frequency response of the open-loop system or the frequency response of the closed-loop system. Acer Aspire 4732z battery Acer Aspire 4935 battery Acer Aspire 5552 battery Acer Aspire 5735 battery